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Numerical results are presented for an oscillating viscous flow past a square cylinder with
square and rounded corners and a diamond cylinder with square corners at Keulegan—Carpen-
ter numbers up to 5. This unsteady flow problem is formulated by the two-dimensional
Navier—Stokes equations in vorticity and stream-function form on body-fitted coordinates and
solved by a finite-difference method. Second-order Adams-Bashforth and central-difference
schemes are used to discretize the vorticity transport equation while a third-order upwinding
scheme is incorporated to represent the nonlinear convective terms. Since the vorticity distribu-
tion has a mathematical singularity at a sharp corner and since the force coefficients are found
in experiments to be sensitive to the corner radius of rectangular cylinders, a grid-generation
technique is applied to provide an efficient mesh system for this complex flow. Local grid
concentration near the sharp corners, instead of any artificial treatment of the sharp corners
being introduced, is used in order to obtain high numerical resolution. The elliptic partial
differential equation for stream function and vorticity in the transformed plane is solved by
a multigrid iteration method. For an oscillating flow past a rectangular cylinder, vortex
detachment occurs at irregular high frequency modes at KC numbers larger than 3 for a square
cylinder, larger than 1 for a diamond cylinder and larger than 3 for a square cylinder with
rounded corners. The calculated drag and inertia coefficients are in very good agreement with
the experimental data. The calculated vortex patterns are used to explain some of the force
coefficient behavior. ( 1999 Academic Press
1. INTRODUCTION

THE PREDICTION OF VISCOUS FORCES acting on slender and bluff bodies with cross-sectional
shapes other than circular is of practical importance in the offshore industry as well as in
many other industrial applications. Viscous flow past bluff bodies is frequently associated
with the phenomenon of vortex formation and shedding which has significant influence on
unsteady dynamic forces and makes the problem more complicated. The physical flow for
this problem oscillates back and forth past the cylinder with the axis of the cylinder
perpendicular to the direction of the flow. The parameters describing this flow are the
Reynolds number, Re"º

m
D/l, and the Keulegan—Carpenter number, KC"º

.
¹/D,

where º
.

is the maximum oscillatory velocity, ¹ is the period of oscillation, D is the width
of the cylinder perpendicular to the flow, and l is the kinematic viscosity of the fluid. An
alternate to either of these is the frequency (or Stokes) parameter defined as
b"Re/KC"D2/lT. When the fluid oscillation is sinusoidal, as it is in this study, KC can
be expressed as 2na/D, where a is the amplitude of fluid oscillation. For small values of KC
(KC45 at b"213), the wake that is developed remains more or less symmetrical and
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simply moves back and forth, being driven by the freestream flow as it oscillates. Due to
induced velocity effects, the wake will develop asymmetries at lesser times as the value of
KC increases. For larger values of KC (KC510), the induced velocity effects drive the
wake to become oblique, it moves off to one side, has a shape similar to a Karman vortex
street as in a steady approach flow, and moves back and forth as the freestream flow
oscillates. For much larger values of KC, the wake again is formed only in the direction of
flow; there are no oblique vortex patterns present. However, at these large values of KC, the
wake is asymmetric and will be similar in appearance to the Karman vortex street behind
a circular cylinder.

There are obvious implications for the force acting on the cylinder due to these various
wake behaviors. The discussion in this study will focus on the low KC value case, where
relatively small transverse forces are present because the wake remains (at least approxim-
ately) symmetric. Anything similar to a Karman vortex street, such as might be found at
large values of KC, is not present for the parameter values considered herein. Viscous flow
past a rectangular cylinder involves mathematical and physical difficulties at the sharp
corners. It is well known that the vorticity distribution has a mathematical singularity on
a sharp corner because of the no-slip boundary condition imposed at the location of
a geometrical discontinuity. Physically, a sharp corner is a well-defined flow-separation
point; the corner sharpness, r/D, of the rectangular cylinder (where r is the corner radius and
D is the cylinder dimension normal to the onset-flow direction) plays an important role in
determining the flow separation and reattachment, the frequency of vortex shedding, and
the force coefficients.

Moffatt (1963) obtained similarity solutions for the viscous flow adjacent to a sharp
corner with the assumption that the flow is Stokesian and the solution consists of the
vorticity and pressure both tending to infinity at the corner. In spite of the nonexistence of
the mathematical singularity in a finite-difference approximation, very large velocity,
vorticity and pressure gradients appear in the immediate vicinity of a sharp corner. Many
treatments have been used in previous numerical calculations to deal with the difficulties of
the sharp corners for the viscous flow past rectangular cylinders.

Roache (1982) listed seven different methods of handling the vorticity boundary condi-
tion at a sharp corner in rectangular coordinates. All of the seven alternatives were
attempted to compromise the difficulties in which the wall vorticity had two values at the
grid point located exactly at the sharp corner. In fact, all of the seven approaches introduced
artificial assumptions without any theoretical and experimental validation. It was noted
that the relative quality of each of the seven methods is debatable. Roache suggested that
good accuracy near the sharp convex corner would be achieved by a local analytical
solution in polar coordinates centered on the corner. This approach was carried out by
Fletcher & Srinivas (1983) in which a surface layer was introduced to isolate a sharp corner
from the computational domain, across which the computational solution was matched to
the theoretical solution for the corner flow obtained by Moffatt (1963). Moffatt’s expansion
method deals effectively with the situation at the corner for low Reynolds number flow.
However, for high Reynolds number corner flow, which is characterized by local acceler-
ation and separation, the Stokes flow assumption is unlikely to be satisfied.

Davis & Moore (1982) developed a numerical solution for the steady approach flow with
an unsteady wake past rectangular cylinders, and they met with difficulties in determining
the undefined velocities at the sharp corners of a rectangular cylinder on a staggered grid.
Two assumptions were introduced to evaluate the convective flux across the control volume
on both sides of the corner. The procedures described at the four corners were not the only
possible ones, which may have been the reason for the Davis & Moore Strouhal number to
deviate further from the experimental value with increased refinement of the mesh.
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Tamura et al. (1990) dealt with the difficulties of a sharp corner by rounding the corner
with a very small radius to try to reduce the numerical error caused by the nonsmoothness
of the matrices of the transformation derivatives. However, the discontinuity of the trans-
formation derivatives can never be essentially removed by rounding the sharp corner, until
the corner radius becomes large enough so that the cross-section of the cylinder is no longer
a square. Otherwise, the nonsmoothness of the matrices of the transformation derivatives
always exists, which actually is a geometric characteristic of square corners.

Smith & Stansby (1991) employed the Karman—Trefftz formation and the Theodo-
rsen—Garrick transformation to map a sharp-edged square onto a unit circle. An artificial
cut-off was introduced to truncate the singular mapping derivative at each of the sharp
corners. However, it was shown by Scolan & Faltinsen (1994) that the cut-off had a signifi-
cant influence on the vortex motions and the drag coefficient due to skin friction. Instead of
truncating the mapping derivative arbitrarily, they eliminated the singularity by replacing
the Jacobian of the transformation by that for similar configurations without sharp edges.
Because the singularity of the mapping derivative is actually the geometric property of the
sharp-edged square, the substitutions may also change the local flow characteristics of the
square cylinder with sharp corners.

It is clear that any treatment of a sharp corner may, more or less, distort not only the
geometric properties but also the flow characteristics of the rectangular cylinder. It is
concluded that the best way to deal with the difficulty of a sharp corner is no special
treatment of the types previously attempted. In the present study, in order to simulate
viscous flow past a rectangular cylinder with high accuracy, it is convenient to use
body-fitted coordinates through coordinate transformations in the governing equations
and boundary conditions. Owing to the one-to-one coordinate transformations (unique,
single-valued), there is no difficulty encountered regarding two values of the wall vorticity at
each of the four sharp corners. Even though the transformation derivatives are strongly
discontinuous at the four sharp corners, which leads to a singular-like vorticity distribution
near the corners, no treatment will be imposed on the sharp corners so that no artificial
error is introduced. Because the very large gradients of velocity and vorticity occur near the
sharp corners, a high quality mesh system with grid concentration in the neighborhood of
the corners is provided by a grid generation technique to obtain high numerical resolution.
Numerical convergence tests, to be presented, will prove this approach is very successful.

With the aid of powerful computational facilities and advanced numerical techniques,
including grid generation and the multigrid method, the present study will provide a general
and robust approach to investigate viscous flow past bluff bodies, which is concentrated on
rectangular cylinders with three basic cross-sectional shapes: a square, a diamond, and
a square with rounded corners. This numerical study will be more concerned with
a sinusoidally oscillating viscous flow. The drag and inertia coefficients calculated from the
Morison equation will be compared with the previous numerical results and the experi-
mental data obtained by Bearman et al. (1984).

2. MATHEMATICAL FORMULATION

The viscous oscillatory flow of an incompressible fluid past a bluff cylinder is considered.
The governing equations of the 2-D unsteady flow problem are the Navier-Stokes equations
in the vorticity (u) and stream-function (W) form, which can be expressed nondimensionally
in Cartesian coordinates as
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where the subscript x indicates the partial derivative with respect to x, u is the component of
vorticity in the x direction nondimensionalized with respect to º/D, the stream function
W with respect to ºD, t with respect to D/º, and x and y with respect to D. The term º is
the maximum magnitude of the onset-flow velocity º.

The boundary conditions are

W"

W

n
"0, u"u

b
on the cylinder, (3)

W"W
p
sin 2nt, u"0 far from the cylinder, (4)

where n is the normal to the surface of the cylinder, u
b
is the vorticity distribution on the

surface of the cylinder and is determined by imposing the no-penetration and no-slip
boundary conditions on equation (2), W

p
is the solution of the stream function for the

potential flow past a rectangular cylinder and is obtained through the Schwartz—Christoffel
transformation.

For a bluff body in a doubly connected region, a one-to-one transformation from the
physical plane (x, y) to a generalized curvilinear coordinate plane (m, g) is introduced to
generate a simply connected rectangular computational domain, which is defined by

x"x (m, g), y"y(m, g). (5)

Under the coordinate transformation, equations (1) and (2) can be mapped into the
corresponding equations containing partial derivatives with respect to m and g as follows:
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where the operator DM is defined by

DM "
aAmm!2bAmg#cAgg

J2

#

(axmm!2bxmg#cxgg) (ymAg!ygAm)#(aymm!2bymg#cygg) (xgAm!xmAn
)

J3
(8)

with A as either W or u. The transformation parameters are

J"xmyg!xgym, a"x2g#y2g , b"xmxg#ygym, c"x2m#y2m . (9)

The boundary conditions under the transformation become

t"

c1@2
J

tg"0 and u"

c
J2

tgg on g"0, (10)

t"t
p
sin 2nt and u"0 on g"1. (11)

The periodic boundary conditions are imposed on m"0 and m"1. Since the flow starts
from rest, the initial conditions throughout the field are

t"0, u"0. (12)
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The pressure coefficient is derived from the integration of the momentum equation along
the surface of the cylinder, which is given in the transformed plane by

C
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J
(bum{!cug)dm@. (13)

The in-line force and lift coefficients in the transformed plane are denoted C
F

and C
L
,

respectively, and are found by integrating the pressure and shear stress distribution around
the cylinder,
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The standard method of representing the dimensionless in-line force coefficient C
F

on
a cylinder of any cross-section in a sinusoidally oscillating flow is based on the Morison
equation [see Sarpkaya & Isaacson (1981)],
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The values of the drag coefficient C
D

and the inertia coefficient C
M

can be obtained from
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3. NUMERICAL IMPLEMENTATION

In the present computation, grid systems are produced by GENIE2D, a grid-generation
package created in the NSF Engineering Research Center at Mississippi State University,
using an algebraic grid generation method. The near corner grid system for a square
cylinder (one-quarter of the cylinder side) is shown in Figure 1. The grid for flow past
a diamond cylinder is obtained by considering the flow to be from a 45° angle of attack, as is
also shown in Figure 1. Apart from the grid concentration very close to the body surface in
the radial direction, grid concentration is also arranged locally near the four sharp corners
of the square and diamond cylinders, to increase the numerical resolution near the corners
with very large gradients of velocity and vorticity. All of the transformation derivatives and
parameters in equation (9) are approximated by second-order central-difference expres-
sions.

The vorticity transport equation is explicitly discretized in time by using the second-order
Adams—Bashforth scheme. All of the spatial discretizations are second-order central-
difference schemes, except the nonlinear convective terms in equation (6). The third-order
upwinding scheme proposed by Leonard (1979) is applied to approximate these convective
terms. Due to the existence of mixed derivatives and variable coefficients in equation (7), it is
impractical to solve it by using the spectral method incorporating the FFT algorithm with
high efficiency. The multigrid iteration method is the most efficient approach to solve
equation (7).
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A multigrid solver was developed by Sanders (1992) to solve the two-dimensional
Helmholtz equation,

$ · (A(x)$u)!au#f (x)"0. (19)

where A(x), f (x) and u(x, y) are arbitrary functions and a is a constant. In the present study,
the multigrid solver has been developed to solve a 2-D elliptic partial differential equation
with mixed derivatives, first-order derivatives and variable coefficients,
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, f, and u are arbitrary functions of x and y. For viscous flow past

rectangular cylinders, the grid system is characterized by discontinuous transformation
derivatives near the four sharp corners, which correspondingly lead to the strongly discon-
tinuous coefficients in equation (9). This multigrid solver possesses the capability of solving
elliptic partial differential equations with discontinuous coefficients. It has been shown in
various numerical tests that the multigrid solver has a solid dependability of accurately
solving elliptic partial differential equations with higher efficiency than the SOR iteration
method with Chebyshev acceleration (Sanders 1992). The multigrid solver has been opti-
mized herein to run at more than 350 megaflops on the Cray C90 at the Pittsburgh
Supercomputer Center.

The vorticity boundary condition in equation (10) on the body surface can be expressed
in terms of the stream function in the interior mesh points with second-order accuracy,
using the Taylor series expansion with the implication of the no-slip condition,
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where Dg is the grid spacing in the g direction in the transformed plane.

4. VALIDATION OF THE NUMERICAL METHODS

Convergence validation of numerical methods has been a difficult and controversial issue
for unsteady viscous flow past bluff cylinders, especially with cylinders with sharp corners.
Generally speaking, convergence in space is more crucial than that in time, due to the
existence of large spatial gradients. The lack of spatial convergence also leads to a failure of
convergence in time which is distinct from an instability. The vorticity distribution on the
body surface is usually the best choice to demonstrate the spatial convergence of the
numerical solutions in the vorticity/stream-function formulation. However, for viscous flow
past a rectangular cylinder, the wall-vorticity distribution has a mathematical singularity on
the sharp corners of the cylinder, which then never has a converged numerical solution. In
the previous numerical studies of viscous flow past rectangular cylinders, several ap-
proaches have been used to show convergence in space. Davis & Moore (1982) used the
Strouhal number and the average in-line force coefficients for a square cylinder as the
characteristic quantities to exhibit the variations with mesh sizes and the comparisons to
experimental data. Smith & Stansby (1991) showed the influence of the artificial cut-off of
the mapping derivative on the drag coefficients for oscillating flow past a diamond cylinder.
Tamura et al. (1990) presented the effects of grid spacing on the computed in-line force
coefficients and the flow patterns of a circular cylinder. However, the Strouhal number and
the force coefficients are not the direct solutions of the numerical methods and are
calculated through time averaging. Therefore, it is doubtful that these quantities can



Figure 1. Local grid concentration.
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provide clear measures of convergence in space. As to the flow pattern, it is a space- and
time-dependent quantity and may not be used directly to trace the convergence trends,
especially for unsteady flow problems.

In the present study, beside the instantaneous wall-vorticity distribution, the instan-
taneous pressure coefficient on the surface of rectangular cylinders is utilized to demon-
strate the spatial convergence of the numerical methods. The instantaneous pressure
coefficient has finite magnitude and is calculated from direct integration of the wall-vorticity
derivatives on the body surface. Convergence tests have been conducted for a sinusoidally
oscillating viscous flow past a square cylinder at b"432 and KC"1. Two types of grid
distributions in the circumferential direction are tested; one is a uniform distribution and
another is a hyperbolic tangential distribution with local grid concentration close to each of
the four sharp corners shown in Figure 1. The minimum mesh sizes in the g direction in the



Figure 2. Influence of mesh size on the wall-vorticity distributions and pressure coefficients for oscillating
flow past a diamond cylinder without local grid concentration at b"432, KC"1, and t"2.
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physical plane are given by 0)02, 0)01 and 0)005 on 65]65, 129]129 and 257]257 grids,
respectively. The minimum mesh sizes in the circumferential direction in the physical plane
are 0)005, 0)0025 and 0)00125 for the square cylinder in the cases with local grid concentra-
tion near the four sharp corners, and 0.01, 0.005 and 0.0025 for the diamond cylinder on the
three different grids, respectively. The maximum distance between the center of the cylinders
and the outer boundary is specified as 10D. The width D of the square and the diamond
cylinders normal to the flow direction is specified as unity. The time step Dt is 0)0005,
0)00025 and 0)000125 for the square cylinder and the diamond cylinder on the three
different grids, respectively. The calculations were done on our Silicon Graphics Indigo



Figure 3. Influence of mesh size on the wall-vorticity distributions and pressure coefficients for oscillating
flow past a diamond cylinder with local grid concentration at b"432, KC"1, and t"2.
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R4000 Work Station and on the Cray C90 at the Pittsburgh Supercomputing Center. It
took approximately 2 h to calculate one cycle on the SGI Work Station and about 10 min
per cycle on the Cray C90.

Figure 2 shows the wall-vorticity distributions and pressure coefficients at time t"2 for
the diamond cylinder on the three different grids with uniform grid distribution (no grid
concentration) in the circumferential direction. The wall-vorticity distributions behave in
a singular fashion on the four sharp corners of the cylinder, which makes the pressure
coefficients have a big jump at the corners. It is observed from Figure 2 that the peaks in the
wall-vorticity significantly increase with decreasing mesh sizes. It is also noted that the



TABLE 1

Comparisons of the drag and inertia coefficients on 129]129 grids with and without grid refinement
for oscillating flow past square and diamond cylinders

C
D

C
M

C
D

C
M

Bearman Bearman
without without with with et al. et al.

gird grid grid grid experimental experimental
refinement refinement refinement refinement C

D
C

M

Square b"213 13)31 3)36 3)07 2)99 3)19* 2)78
KC"1

Diamond b"432 8)28 1)69 4)71 1)63 4)6 1)69
KC"1

*Interpolated.
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pressure coefficient did not converge as the number of grid points increased for this case of
a uniform grid distribution.

The case in Figure 3 is the same as in Figure 2, but with local grid concentration near the
sharp corners in the circumferential direction. Even though the wall-vorticity distributions
in the immediate vicinity of the four sharp corners still go up drastically due to its singular
property, the other part of the distributions tend to be convergent as the mesh sizes are
refined. As for the pressure coefficients, distinct convergent trends are found in Figure 3,
even around the four sharp corners. The pressure coefficients become smooth around the
sharp corners of the cylinder with local grid concentration, instead of the discontinuous
distributions on the sharp corners without local grid refinement.

Comparison of Figures 2 and 3 shows that it is the local grid concentration near the sharp
corners that makes convergence realizable. Table 1 shows that the calculated drag and
inertia coefficients on the 129]129 grids with local grid concentration are in very good
agreement with the experimental values obtained by Bearman et al. (1984), while those on
the 129]129 grid without grid concentration deviate significantly from the experimental
data. From the convergence test conducted, it is concluded that the numerical results have
converged satisfactorily for the square and diamond cylinders on the 129]129 grids with
local grid concentration.

5. RESULTS AND DISCUSSION

5.1. SQUARE CYLINDER

A sinusoidally oscillating flow past a square cylinder was computed for 10 flow cycles on
a 129]129 grid with local grid concentration at b"213 and KC number ranging from 1 to
5. The minimum mesh size in the g direction in the physical plane is 0.01 while the
hyperbolic tangentially distributed (local) grid concentration near each of the four sharp
corners is imposed in the circumferential (m) direction with the minimum mesh size equal to
0)0025 in the physical plane. The maximum dimensionless distance r

=
between the center of

the cylinder and outer boundary is 10. The time step *t is 0)00025 at KC"1, 2 and 3, but is
0)0002 at KC"4 and 5. In each case to be discussed, the starting flow always occurred from
left to right.

Figures 4—6 show the vorticity plots for KC numbers of 1, 3, and 5 at several dimension-
less times through a multicycle oscillation. The KC number for sinusoidal oscillations is
2na/D, where a is the amplitude of oscillation and D is the square cylinder width. In each



Figure 4. Vorticity distribution on a square cylinder for KC"1 at different dimensionless times, b"213.
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Figure 5. Vorticity distribution on a square cylinder for KC"3 at different dimensionless times, b"213.
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case, the solid lines represent positive vorticity while the dashed lines represent
negative vorticity. Also, the grid is the 129]129 mesh with grid concentration in each
case.

Figure 4 shows the vorticity behavior through two complete cycles of oscillation and at
the end of the 10th cycle for KC"1 and b"213. At this low value of KC, the a/D value is
1/(2n), which is quite small and the flow would be expected to remain symmetric with the
wake vortices close to the cylinder, i.e., no vortices are shed during these two oscillatory
cycles. (This statement will be verified later when Figure 7 is discussed.) During the first half
cycle (t40)5), the layers of positive and negative vorticity on each side of the cylinder are
evident. As the flow reverses and the return flow part of the first cycle begins, the original
vorticity layers are pushed outward from the sides of the cylinder as new layers of oppositely
signed vorticity are formed. Note that these newly formed vorticity layers wrap around the
corners of the cylinder. At the beginning of the second cycle (t"1)1), the outside vorticity
layer on each side splits to become two distinct regions of like-sign vorticity. As the flow
continues through this time range (1)04t41)5), the vortical structures become
more complicated, but remain symmetric. A new layer of vorticity forms on either side of
the square cylinder with the layer remaining from the previous half cycle located just
outside this newly formed layer. The vorticity from the original half-cycle has now formed
distinct unattached regions of recirculating flow, external to the two attached layers. This
same process continues in the fourth half-cycle with the vorticity from the first two
half-cycles having formed distinct recirculation regions of opposite-sign vorticity.
The vorticity from the last two half-cycles still exists over the sides of the cylinders. The
remaining part of Figure 4 shows the vorticity patterns at the end of the 10th cycle. The
vortex structures are more complicated and more extensive, but they remain symmetric as
expected.

Figure 5 shows the behavior of the vorticity for a 10-cycle oscillation for KC"3 and
b"231. In this case, the oscillation amplitude is three times as much as for the KC"1
situation. Even so, the flow does remain symmetric over at least 10 cycles (as will be noted in
Figure 8). The first half-cycle here is similar to the previous case (KC"1). However, the
splitting of the original (first half-cycle) vorticity layers in this case leads to part of them
appearing as distinct and separated wake vortices in the second half-cycle. The larger
velocity in the KC"3 case (relative to KC"1) induces the distinct vortex structures from
the first half-cycle to move farther downstream, i.e., more into the wake of the second
half-cycle. As the second cycle begins, the same process is repeated, except that the two
vortex structures that had moved into the wake of the previous half-cycle remain there,
although they do move closer to the cylinder. So, at the end of the third half-cycle, each end
of the square cylinder has two distinct pairs of opposite-sign vortices present. As the flow
reverses again, new distinct vortex structures have formed and move into the region
which was the wake of the second half-cycle. The new and previous distinct vortex
structures (of like sign) merge to form one vortex of extended length. In addition to the
formation of these wake vortices, the flow along the sides of the cylinder produced the dual
layer of opposite-sign vorticity as in the KC"1 case. The vortex structures at t"10 show
that the flow has remained symmetric through at least the first ten cycles of oscillation at
KC"3.

The last case for a square cylinder, shown in Figure 6 for KC"5 and b"213, becomes
asymmetric rather quickly. For KC"5, the a/D value is 5/(2n) which still seems rather
small, but now vortices are both convected and induced up to six diameters downstream by
the eighth cycle. By the end of the first half cycle for this case, the vortex pattern is
asymmetric. The dual wake vortices at the end of the second half cycle have moved much
further downstream than for the KC"3 case. The vorticity on the sides of the cylinder



Figure 6. Vorticity distribution of a square cylinder for KC"5 at different dimensionless times, b"213.
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Figure 7. In-line force and lift coefficients for a square cylinder at b"213 and KC"1.

Figure 8. In-line force and lift coefficients for a square cylinder at b"213 and KC"3.

Figure 9. In-line force and lift coefficients for a square cylinder at b"231 and KC"5.
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TABLE 2

Comparisons of the drag and inertial coefficients for oscillating flow past a square cylinder at b"213

KC Present Present Scolan & Scolan & Bearman Bearman
number calculated calculated Faltinsen Faltinsen et al. et al.

C
D

C
M

calculated calculated experimental experimental
C

D
C

M
C

D
C

M

1 3)01 2)99 4)39 2)98 3)19* 2)78
2 3)21 3)07 3)61 2)99 3)15 3)06
3 3)19 3)23 3)19 3)04 2)84 2)89
4 2)40 3)21 2)76 3)07 2)42 2)96
5 2)38 3)08 2)28 3)09 2)27 3)13

*Interpolated.
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follows the same dual layer behaviour as for the lower KC values. The process repeats itself
as the number of cycles goes up with the asymmetry increasing. In spite of the downstream
distance these wake vortices have moved, conventional vortex shedding of the alternating
and periodic type has not yet occurred. The downstream-distance movement is primarily
due to induced velocity effects.

Figures 7—9 present the variations of the in-line force coefficient C
F

and the lift coefficient
C

L
at KC numbers of 1, 3, and 5. The variation of the in-line force coefficient is smooth,

periodic and symmetric with respect to the axis of the onset-flow oscillation, and the lift
coefficient is equal to zero at KC"1; both are shown in Figure 7. At KC"3 (Figure 8),
a small ‘‘dent’’ at each peak of the curve of the in-line force coefficient has appeared, but the
influence is not so strong since the in-line force coefficient remains regular, periodic, and
symmetric. We attribute this dent to the effect of induced velocity as the freestream velocity
comes to rest at the end of each half cycle. At KC"5 (Figure 9), the variation of the in-line
force coefficient is characterized by some fluctuations of the magnitude of each peak with
irregular frequency modes and a sharp angle at each peak of the curve. This behavior is
obviously characterized by the asymmetric motion of the vortex structure surrounding the
cylinder.

Asymmetrical modes begin to appear at KC numbers larger than 3 and develop to
contribute a nonzero value of the lift coefficient at KC"5. The irregular high-frequency
modes in the force coefficient are believed to be induced by the flow asymmetry and the
interaction between the frequency of the onset-flow oscillation and the frequency of the
vortex detachment. Nevertheless, the in-line force coefficients are dominated by the effects
of the forced oscillation of the onset flow, even though the high frequency modes have
strong effects on them. Therefore, it is reasonable to calculate the drag and inertia
coefficients from Morison’s equation with the computed in-line force coefficients
averaged over the last five of the 10 flow cycles at KC numbers above 3, where the flow
structure has become fully established and the inertial effect from starting the flow from rest
has vanished.

It is shown in Table 2 that the calculated drag and inertia coefficients at KC from 1 to
5 are in very good agreement with the experimental data obtained by Bearman et al. (1984).
These calculated values are obtained from the last five cycles of the oscillating freestream
flow. The calculated drag and inertia coefficients in the present study are typically closer to
the experimental data than those in the study of Scolan & Faltinsen (1994) which were
obtained by using the same random-vortex method as Smith & Stansby (1991) with some
correction.



Figure 10. In-line force and lift coefficients for a square cylinder with rounded corners (r/D"0)132) at b"172
and KC"3.

Figure 11. In-line force and lift coefficients for a square cylinder with rounded corners (r/D"0)132) at b"172
and KC"5.
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5.2. SQUARE CYLINDER WITH ROUNDED CORNERS

The numerical computation of sinusoidally oscillating flow past a square cylinder with
rounded corners, r/D"0)132, was performed for ten flow cycles on a 129]129 grid at



Figure 12. Near field of vorticity contours on a square cylinder with rounded corners (r/D"0)132) at b"172
for (a) KC"3 and (b) KC"5, at three different dimensionless times.
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b"172 and KC numbers ranging from 1 to 5, where r is the radius of each rounded corner of
the cylinder. The minimum mesh size in the g direction is 0)01 in the physical plane for KC42
and 0)005 at KC'2, while the grid distribution in the circumferential direction is uniform due
to no singularity of wall vorticity distribution involved for the square cylinder with rounded
corners. The maximum dimensionless distance between the center of the cylinder and the outer
boundary is 10. The time step Dt is 0)001 at KC"2 and 0)0005 at KC'2.



TABLE 3

Comparisons of the drag and inertial coefficients for oscillating flow past a square cylinder with
rounded corners, r/D"0)132, at b"172

KC Present Present Smith & Smith & Bearman Bearman
number calculated calculated Stansby Stansby et al. et al.

C
D

C
M

calculated calculated experimental experimental
C

D
C

M
C

D
C

M

2 2)6 2)84 2)38 2)75 2)18 2)86
3 2)37 2)80 2)44 2)75
4 1)98 2)79 1)93 2)82
5 1)81 2)92 1)71 2)89
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Figures 10 and 11 show the variation of the in-line force and lift coefficients for KC"3
and 5. At KC"3, the variation of the in-line force coefficient is similar to that at KC"1,
but with a little sharper angle at the peaks of the curve and the lift coefficient has a very
small disturbance, from which asymmetric modes begin to appear. At KC"5, asymmetric
modes have a significant influence on the in-line and lift force coefficients with fluctuations
and irregular high frequencies. The lift coefficient shows the effects of the beginning of wake
asymmetries.

There is a noticeable difference between the results for the cylinders with rounded and
unrounded corners. Figure 12(a) shows the vortex patterns for the rounded-corner cylinders
for KC"3 and b"172. The vortex structures in the case for b"213 (square corners) in
Figure 5 are distinct, while those in the b"172 case (rounded corners) in Figure 12 are still
connected to the cylinder. Even though the b values are slightly different, the difference
should not account for the break in the vortex structures seen in Figure 5. The effect of
square corners is far more evident in Figure 12(b) where the vorticity contours for the
rounded-corner cylinder are shown for KC"5. The results for b"213 (square corners)
show a disorganized wake structure while the case for b"172 (rounded corners) shows
a more organized structure. The square corners are evidently responsible for the disor-
ganized structure in the b"213 case. Thus, we feel that the difference in vortex structures is
due to the effect of the rounded corners, and is not due to the slight difference in b values
between the two cases.

A comparison of Figure 8 (square corners) and Figure 10 (rounded corners) reveals the
absence in the rounded-corners results of the small oscillations at the maximum and
minimum points on the inline force that were present in the square-corner results. The peak
values for the rounded-corner results are also slightly less than the peak values for the
square-corner case. The differences are attributed to the stronger vorticity generated in the
square-corner example. We also note that the lift force is zero for KC"3 through 10 cycles,
indicating that the vortex structures remained symmetric. However, for KC"5, the
square-corner lift coefficient (in Figure 9) has begun to show nonzero values at a dimension-
less time as early as t"2)5, indicating an asymmetric wake structure. Also, the rounded-
corner lift coefficient (in Figure 11) indicates a fairly symmetric wake until a dimensionless
time of about 6 with only a small deviation from zero until a time of about 9, indicating
a delay in wake asymmetry which we attribute to the rounded corners.

It is shown in Table 3 that the calculated drag and inertia coefficients at b"172 and at
KC numbers from 2 to 5 are in very close agreement with the experimental data obtained by
Bearman et al. (1984).



Figure 13. Near field of vorticity contours on a diamond cylinder at b"432 for (a) KC"1 and (b) KC"3,
at three different dimensionless times.
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Comparing the values in Tables 2 and 3 shows that the drag coefficients for the
rounded-corner cylinder are noticeably less than for the square-cornered cylinder. The
inertia coefficients are slightly less for the rounded-corner cylinder case. We attribute these



Figure 14. Near field of vorticity contours on a diamond cylinder at b"432 and KC"5 at three different
dimensionless times.
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Figure 15. In-line force and lift coefficients for a diamond cylinder at b"432 for (a) KC"1, (b) KC"3, and
(c) KC"5.
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TABLE 4

Comparisons of the drag and inertia coefficients for oscillating flow past a diamond cylinder at
b"432

KC Present Present Scolan & Scolan & Bearman Bearman
number calculated calculated Faltinsen Faltinsen et al. et al.

C
D

C
M

calculated calculated experimental experimental
C

D
C

M
C

D
C

M

1 4)71 1)63 3)57 1)53 4)6 1)63
2 5)12 1)48 4)48 1)46 5)07* 1)63
3 5)58 1)41 4)03 1)33 5)67 1)72
4 4)84 1)43 3)77 1)42 5)28 1)68
5 4)78 1)66 3)19 1)37 4)81 1)69

*Interpolated.
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differences to the fact that there is a slight difference between the well-defined separation
point for the square-cornered cylinder case and the less well-defined separation point for the
rounded-corner cylinder case.

5.3. DIAMOND CYLINDER

The computation of sinusoidally oscillating flow past a diamond cylinder with square
corners was carried out for ten flow cycles on a 129]129 grid with local grid concentration
at b"432 and KC numbers ranging from 1 to 5. The minimum mesh size in the g direction
in the physical plane is 0)01 while the minimum mesh size in the physical plane is 0)005 in
the circumferential (m) direction with a hyperbolic tangentially distributed grid concentra-
tion near each of the four sharp corners. The maximum dimensionless distance between the
centre of the cylinder and the outer boundary is 10. The time step Dt is 0)00025 at KC"1,
0)0002 at KC"2, 3 and 4, and 0)000125 at KC"5.

The vorticity contours for b"432 and KC"1, 3, and 5 are shown in Figure 13 and 14 at
dimensionless times of 9)5, 9)75, and 10 (through 10 cycles). The results at KC"1 [Figure
13(a)] show a symmetric vortex pattern through ten cycles. The vorticity generated stays
very close to the diamond cylinder except for a pair of symmetric wake vortices on each end
that have evolved, due to induced velocity. For KC"3, in Figure 13(b), the wake vortices,
also shown in the tenth cycle, have become asymmetric well in advance of the tenth cycle [to
be discussed for Figure 15(b)]. For KC"5, in Figure 14, the wake vortices, also shown in
the tenth cycle, have become quite disorganized due to the induced-velocity effects that have
arisen from the wake asymmetry.

Figure 15 presents the variations of the in-line force coefficients C
F
and the lift coefficients

C
L

at KC numbers from 1 to 5. At KC"1, the variation of the in-line force coefficient
shown in Figure 15, is basically smooth, periodic and symmetric with a little irregularity
near each peak of the curve, and the lift coefficient is equal to zero. At KC"3 [Figure
15(b)], asymmetric wake modes have developed to have strong effects on the in-line force
coefficient with some fluctuation on the magnitude of each peak and a very sharp angle at
each peak of the curve. Note the significant decrease in the value of the in-line force
coefficient when the lift force develops, i.e., when the wake becomes asymmetric. At KC"5
[Figure 15(c)], the variation of the in-line force and lift coefficients has strong fluctuation in
the magnitude at each peak with irregular high frequency modes. The in-line force coeffic-
ient decreased in value somewhat when the lift developed, but not to the same extent as that
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in Figure 15(b) for KC"3. Note the earlier onset of asymmetry for the KC"5 case over
that for KC"3.

The drag and inertia coefficients are calculated from the Morison equation through
averaging the computed in-line force coefficient over the last five of the ten cycles at KC"3
and 5, but without averaging at KC"1. It is shown in Table 4 that the calculated drag and
inertia coefficients at KC numbers from 1 to 5 agree very well with the experimental data
obtained by Bearman et al. (1984). Comparisons of the calculated drag and inertia coeffi-
cients to the experimental values show the results in the present study agree more closely
with experimental data than those in Scolan & Faltinsen (1994).

6. CONCLUSIONS

Numerical solutions of oscillating flow past a square cylinder, a diamond cylinder and
a square cylinder with rounded corners are obtained from solving the 2-D Navier—Stokes
equations in vorticity/stream-function variables on body-fitted coordinates. The second-
order finite-difference approximations in both space and time are utilized to solve the
unsteady flow problem with incorporation of a grid-generation technique and a third-order
upwinding scheme in the nonlinear convective terms in the vorticity transport equation.
A multigrid solver is used on the general elliptic partial differential equation with mixed
derivatives and variable coefficients.

Numerical computations are carried out for an oscillating flow past a square cylinder at
b"213, a diamond cylinder at b"432 and a square cylinder with rounded corners at
b"172 for KC numbers ranging from 1 to 5. It has been found that the calculated drag and
inertia coefficients are in very good agreement with the experimental data obtained by
Bearman et al. (1984) for oscillating flow past a square cylinder, a diamond cylinder and
a square cylinder with rounded corners. The calculated drag and inertia coefficients are
closer to the experimental data than those in several other computational studies. The
behaviour of the inline force and lift coefficients is explained using vorticity contours that
were obtained during the solution process. In conclusion, we feel that an accurate finite-
difference solution is a better means of predicting forces on square bodies in an oscillating
flow than a method that relies on a computational model such as the random vortex method.
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